## Appendix GG

## Transitions with $x$ - and $y$-Polarized Light

We would now like to calculate transition probabilities for light polarized in the $x$ - and $y$-directions. For this purpose, we introduce linear combinations of the $x$ - and $y$-coordinates having simple transition integrals. We define $r_{+}=x+i y$ and $r_{-}=x-i y$. Using Eq. (4.3) and Euler's formula, one may derive the following equations for $r_{+}$and $r_{-}$

$$
\begin{gather*}
r_{+}=r \sin \theta \mathrm{e}^{\mathrm{i} \phi}  \tag{GG.1}\\
r_{-}=r \sin \theta \mathrm{e}^{-\mathrm{i} \phi} \tag{GG.2}
\end{gather*}
$$

The significance of the variables $r_{+}$and $r_{-}$may be understood in physical terms. If we were to multiply $r_{+}$by the time dependence $\mathrm{e}^{-\mathrm{i} \omega t}$ corresponding to an oscillating electric field, we would obtain

$$
\begin{equation*}
r_{+}(t)=r \sin \theta \mathrm{e}^{\mathrm{i}(\phi-\omega t)} \tag{GG.3}
\end{equation*}
$$

$r_{+}(t)$ has the same dependence upon the polar angle and time as the components of a polarization vector rotating about the $z$-axis. We may thus associate the variable $r_{+}$with circularly polarized light. Similarly, $r_{-}$may be associated with circularly polarized light for which the polarization vector rotates about the $z$-axis in the opposite direction. We now use the variables $r_{+}$and $r_{-}$to evaluate transition integrals for $x$ - and $y$-polarized light.

## Example GG. 1

Again for the $2 p \rightarrow 1 s$ transition of the hydrogen atom, calculate the transition integrals for $x$ - and $y$-polarized light.

## Solution

For the transition $2 \mathrm{p}-1$ to 1 s 0 , the integral of $r_{+}$is

$$
\begin{equation*}
\int \phi_{1 s 0}^{*} r_{+} \phi_{2 p-1} \mathrm{~d} V=R_{i} \int_{0}^{\pi} \frac{1}{\sqrt{2}} \cdot \sin \theta \cdot \frac{\sqrt{3}}{2} \sin \theta \sin \theta \mathrm{~d} \theta \int_{0}^{2 \pi} \frac{1}{\sqrt{2 \pi}} \cdot \mathrm{e}^{\mathrm{i} \phi} \cdot \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\mathrm{i} \phi} \mathrm{~d} \phi \tag{GG.4}
\end{equation*}
$$

where $R_{i}$ is the radial integral given by Eq. (4.25). The integration over $\phi$ gives 1 , and the $\theta$ integration can be written

$$
\begin{equation*}
\frac{1}{2} \sqrt{\frac{3}{2}} \int_{0}^{\pi} \sin ^{3} \theta \mathrm{~d} \theta=\frac{1}{2} \sqrt{\frac{3}{2}} \cdot \frac{4}{3}=\sqrt{\frac{2}{3}} \tag{GG.5}
\end{equation*}
$$

The transition integral for the operator $r_{+}$is thus

$$
\begin{equation*}
\int \phi_{1 s 0}^{*} r_{+} \phi_{2 p-1} \mathrm{~d} V=\sqrt{\frac{2}{3}} R_{i} \tag{GG.6}
\end{equation*}
$$

The integrals of $r_{+}$for the transition $2 p 0 \rightarrow 1 s 0$ and $2 p+1 \rightarrow 1 s 0$ may be shown to be equal to zero. The integral of $r_{-}$for the transition $2 p+1$ to $1 s 0$ can be shown to be

$$
\begin{equation*}
\int \phi_{1 s 0}^{*} r_{-} \phi_{2 p+1} \mathrm{~d} V=-\sqrt{\frac{2}{3}} R_{i} \tag{GG.7}
\end{equation*}
$$

and the other integrals of $r_{-}$are zero. The defining equations for $r_{+}$and $r_{-}$can be solved for $x$ and $y$ to obtain

$$
\begin{align*}
& x=\frac{1}{2}\left(r_{+}+r_{-}\right)  \tag{GG.8}\\
& y=\frac{1}{2 i}\left(r_{+}-r_{-}\right) \tag{GG.9}
\end{align*}
$$

These equations can be used to evaluate the transition integrals for $x$-and $y$-polarized light.

The transition rates for $x$ - and $y$-polarized light can be calculated using Eqs. (4.20) and (4.21) with $x$ and $y$ in place of $z$. The calculation of these transition rates are left as an exercise (see Problem 18 of Chapter 4).

